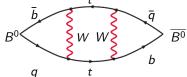

B-physics with domain-wall light quarks and relativistic heavy quarks

Oliver Witzel
Center for Computational Science

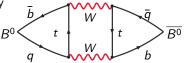
BNL, May 15, 2012

Phenomenological Importance



$B^0 - \overline{B^0}$ Mixing

- ▶ Allows us to determine the CKM matrix elements
- ▶ Dominant contribution in SM: box diagram with top quarks


$$\frac{|V_{td}^*V_{tb}| \, \text{for} B_d - \text{mixing}}{|V_{ts}^*V_{tb}| \, \text{for} B_s - \text{mixing}} \Delta M_q = \frac{G_F^2 m_W^2}{6\pi^2} \eta_B S_0 M_{B_q} \frac{f_{B_q}^2 B_{B_q}}{f_{B_q}^2 V_{tq}^2 V_{tb}}|V_{tq}^*V_{tb}|^2$$

- Nonperturbative contribution: $f_q^2 B_{Bq}$
- ▶ Define the SU(3) breaking ratio $\xi^2 = f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d}$

▶ CKM matrix elements are extracted by

$$\frac{\Delta M_s}{\Delta M_d} = \frac{M_{B_s}}{M_{B_d}} \, \xi^2 \, \frac{|V_{ts}|^2}{|V_{td}|^2} \label{eq:deltaMs}$$

▶ Experimental error of ΔM_q is better than a percent; lattice uncertainty for ε is about 3%

$B \to \pi I \nu$ form factor

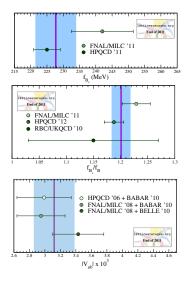
Allows to determine the CKM matrix element V_{ub} from the experimental branching ratio

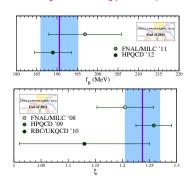
$$\frac{d\Gamma(B\to\pi I\nu)}{dq^2} = \frac{G_F^2 |\frac{V_{ub}|^2}{192\pi^3 M_B^3} \left[(M_B^2 + M_\pi^2 - q^2)^2 - 4M_B^2 M_\pi^2 \right]^{3/2} |f_+(q^2)|^2}{192\pi^3 M_B^3}$$

▶ Tension between exclusive determination and inclusive determinations of V_{ub} is greater than 3σ

Possible Deviations from the Standard Model

[Lunghi and Soni 2010/11]


- ▶ Experimental value for $sin(2\beta)$ is 3.3σ lower than SM expectation
- ▶ Measured value for BR($B \to \pi I \nu$) is 2.8 σ lower than predicted
- ▶ Most likely source of deviation in $B_{d(s)}$ mixing and $\sin(2\beta)$; less likely in $B \to \tau \nu$


```
[Laiho, Lunghi and Van de Water 2012, http://www.latticeaverages.org]
```

- ▶ Scenario in which new physics is in $B \to \tau \nu$ decay and/or in B_d -mixing preferred
- ▶ If tension is taken at face value, points to physics at a few-GeV mass scale

See also: http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it

2+1 Flavor Lattice Calculations of f_{B_s} , f_B , f_{B_s}/f_B , ξ , V_{ub}

► HPQCD and FNAL-MILC result both based on the asqtad-improved staggered ensembles generated by MILC

Our Project

- ▶ Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - ► $B^0 \overline{B^0}$ mixing
 - ▶ Decay constants f_B and f_{B_s}
 - $ightharpoonup B
 ightarrow \pi \ell
 u$ form factor
- ▶ Tune RHQ parameters using bottom-strange states and high statistics
 - ▶ Improve upon exploratory studies and verify made assumptions
 - ightharpoonup Validate tuning procedure by computing $bar{b}$ masses and splittings
- ▶ Derive lattice perturbation theory for matching lattice results to continuum 1-loop in tadpole-improve lattice perturbation
 - ▶ Improve matching using a mostly-nonperturbative scheme for f_B , f_{B_s} and $B \to \pi \ell \nu$

2+1 Flavor Domain-Wall Gauge Field Configurations

- ▶ Domain-wall fermions for the light quarks (u, d, s) [Kaplan 1992, Shamir 1993]
- ▶ lwasaki gauge action [lwasaki 1983]
- Configurations generated by RBC and UKQCD collaborations [C. Allton et al. 2008],

[Y. Aoki et al. 2010]

s) 			
s =	 = 0	s = 1	L_s-1

L	<i>a</i> (fm)	m_l	m _s	$m_\pi(MeV)$	approx. # configs.	# time sources
24	≈ 0.11	0.005	0.040	331	1636	1
24	≈ 0.11	0.010	0.040	419	1419	1
32	≈ 0.08	0.004	0.030	307	628	2
32	≈ 0.08	0.006	0.030	366	889	2
32	≈ 0.08	0.008	0.030	418	544	2

Relativistic Heavy Quark Action for the b-Quarks

▶ Relativistic Heavy Quark action developed by Christ, Li, and Lin for the *b*-quarks in 2-point and 3-point correlation functions

[Christ, Li, Lin 2007; Lin and Christ 2007]

- ▶ Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [Aoki, Kuramashi, Tominaga 2003]
- ▶ Heavy quark mass is treated to all orders in $(m_b a)^n$
- **Expand** in powers of the spatial momentum through $O(\vec{p}a)$
 - Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- ► Applies for all values of the quark mass
- ► Has a smooth continuum limit

Tuning the Parameters of the RHQ Action

$$S = \sum_{n,n'} \bar{\Psi}_n \left\{ m_0 + \gamma_0 D_0 - \frac{aD_0^2}{2} + \zeta \left[\vec{\gamma} \cdot \vec{D} - \frac{a \left(\vec{D} \right)^2}{2} \right] - a \sum_{\mu\nu} \frac{i c_P}{4} \sigma_{\mu\nu} F_{\mu\nu} \right\}_{n,n'} \Psi_{n'}$$

▶ Start from an educated guess for m_0a , c_P , and ζ

$$\begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix} \pm \begin{bmatrix} \sigma_{m_0 a} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sigma_{c_P} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ \sigma_{\zeta} \end{bmatrix} \underbrace{3.3}_{3.1} \underbrace{\sigma_{c_P}}_{3.1} \underbrace{\sigma_{m_0 a}}_{3.1} \underbrace{\sigma_{m_0 a}}_{3.08.20} \underbrace{5.6}_{5.8} \underbrace{5.8}_{6.0} \underbrace{6.2}_{6.2}$$

▶ Compute for all seven parameter sets

spin-averaged mass
$$\overline{M} = (M_{B_s} + 3M_{B_s^*})/4 \rightarrow 5403.1(1.1) \text{ MeV}$$

hyperfine-splitting $\Delta_M = (M_{B_s^*} - M_{B_s}) \rightarrow 49.0(1.5) \text{ MeV}$
ratio $\frac{M_1}{M_2} = M_{\text{rest}}/M_{\text{kinetic}} \rightarrow 1$

▶ Assuming linearity

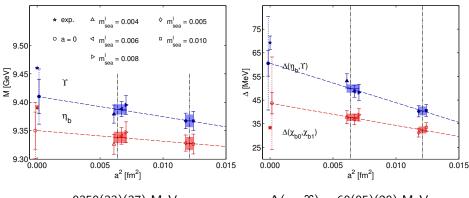
$$Y_r = \begin{bmatrix} \overline{M} \\ \Delta_M \\ \frac{M_1}{M_2} \end{bmatrix}_r = J^{(3\times3)} \begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix}_r + A^{(3\times1)}$$
 $(r = 1, \dots, 7)$

and defining

$$J = \left[\frac{Y_3 - Y_2}{2\sigma_{m_0 a}}, \frac{Y_5 - Y_4}{2\sigma_{c_P}}, \frac{Y_7 - Y_6}{2\sigma_{\zeta}}\right] \qquad A = \begin{bmatrix} M \\ \Delta_M \\ \frac{M_1}{M_2} \end{bmatrix}_1 - J \times \begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix}_1$$

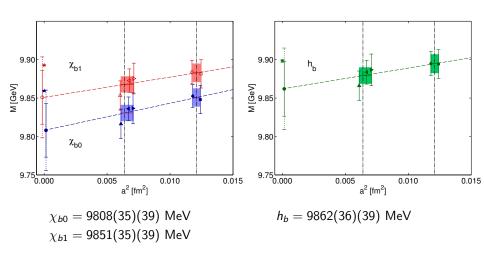
▶ We extract the RHQ parameters and iterate until result is inside uncertainties

$$\begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix}^{\mathsf{RHQ}} = J^{-1} \times \left(\begin{bmatrix} \overline{M} \\ \Delta_M \\ \frac{M_1}{M_2} \end{bmatrix}^{\mathsf{PDG}} - A \right)$$


Nonperturbatively Tuned Parameters of the RHQ Action (preliminary)

m_{sea}^{l}	m_0a	CP	ζ
0.005 0.010	8.43(7) 8.47(9)		3.11(9) 3.1(2)
average	8.45(6)	5.8(1)	3.10(7)

m ^l _{sea}	m ₀ a	CP	ζ
0.004	4.07(6)	3.7(1)	1.86(8)
0.006	3.97(5)	3.5(1)	1.94(6)
0.008	3.95(6)	3.6(1)	1.99(8)
average	3.99(3)	3.57(7)	1.93(4)


Preliminary Predictions for the Heavy-Heavy States

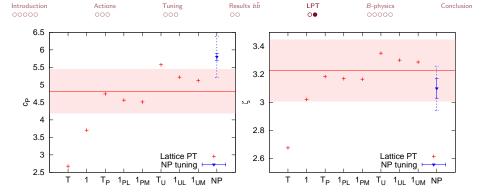
- ▶ RHQ action describes heavy-light as well as heavy-heavy mesons
- ▶ Tuning the parameters in the B_s system we can predict bottomonium states and mass splittings

$$\eta_b = 9350(33)(37) \text{ MeV}$$
 $\Upsilon = 9410(30)(38) \text{ MeV}$

$$\Delta(\eta_b, \Upsilon) = 60(05)(20) \text{ MeV} \Delta(\chi_{b0}, \chi_{b1}) = 44(05)(19) \text{ MeV}$$

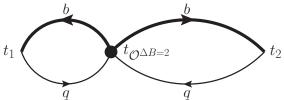
▶ Publication on tuning and bottomonium spectroscopy to appear soon

Introduction Actions Tuning Results b ar b LPT B-physics Conclusion


RHQ Lattice Perturbation Theory [C. Lehner]

Motivation

- ► Knowing the RHQ parameters nonperturbatively we can compare the outcome with lattice perturbation theory
- ▶ Helps to build confidence that lattice perturbation theory is working also in cases where we do not have fully non-perturbative matching (e.g. decay constants, form factors)


Method

- ▶ Computation at 1-loop order
- ▶ Mean field improved
- ▶ Use nonperturbative inputs for $\langle P \rangle$, $\langle R \rangle$, $\langle L \rangle$ and $m_0 a$
- ▶ Predict: c_P and ζ
- ▶ Naive $\alpha_S^2 \sim 5\%$ power-counting estimate

- \blacktriangleright Central values: average of one-loop mean-field improved values computed with u_0 obtained from the plaquette and from the spatial Landau link
- \blacktriangleright Error on perturbative c_P : difference between mean field methods dominates
- \blacktriangleright Error on perturbative ζ : naive power-counting dominates
- ▶ Nonperturbative values include systematic errors from discretization errors in quantities used for tuning
- ▶ Agreement within errors ⇒ MF-improved LPT can be trusted in situations for which NP matching factors are not available

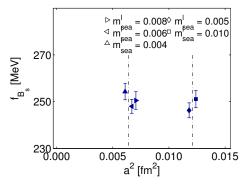
$B^0 - \overline{B^0}$ Mixing Matrix Element Calculation

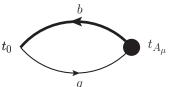
- Location of four-quark operator is fixed
- ▶ Location of *B*-mesons is varied over all possible time slices
- Need: one point-source light quark and one point-source heavy quark originating from operator location
- ▶ Propagators can be used for B- and \overline{B} -meson
- ▶ Project out zero-momentum component using a Gaussian sink
- ▶ Optimize Gaussian wavefunction to minimize excited-state contamination in *B*-meson 2-point correlation function

Preliminary B- and B^* -meson mass

ightharpoonup L = 24, $m'_{sea} = 0.005$, N = 1636, only statistical uncertainty

Mostly Nonperturbative Renormalization

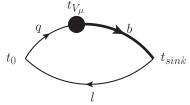

For f_B , f_{B_s} and $B\to\pi$ we plan to compute mostly non-perturbative renormalization factors á la [El Khadra et al. 2001]


$$\varrho^{bl} = \frac{Z_V^{bl}}{\sqrt{Z_V^{bb} Z_V^{ll}}}$$

- lacktriangle Compute Z_V^{ll} and Z_V^{bb} non-perturbatively and only $arrho^{bl}$ perturbatively
- ▶ Enhanced convergence of perturbative serious of ϱ^{bl} w.r.t. Z_V^{bl} because tadpole diagrams cancel in the ratio
- \blacktriangleright Bulk of the renormalization is due to flavor conserving factor $\sqrt{Z_V'' Z_V^{bb}} \sim 3$
- lacksquare ϱ^{bl} is expected to be of $\mathcal{O}(1)$; receiving only small corrections
- For domain-wall fermions $Z_A = Z_V + \mathcal{O}(m_{\text{res}})$ i.e. we know Z_V^{II} [Y. Aoki et al. 2011]
- Mostly nonperturbative renormalization not yet computed for $B^0 \overline{B^0}$ mixing

B-meson Decay Constant Calculation

- ▶ Re-use: point-source light quark and generate Gaussian smeared-source heavy quark
- ▶ Final result will use mostly nonperturbative renormalization


- ▶ Very preliminary result for f_{B_e}
- ▶ Renormalization and matching to be improved: nonperturbative Z_{V}^{II} perturbative Z_{V}^{bb} (tree level, 20% error)

$$\varrho_{bl}=1$$

- Axial current tree-level O(a) improved
- ▶ Small scaling violations

$B \to \pi I \nu$ form factor [T. Kawanai]

- ightharpoonup Compute matrix element of the b o u vector current between B-meson and pion
- ▶ Fix location of pion at t_0 and B meson at $T t_{\mathsf{sink}} t_0$
- lackbox Vary operator location $t_{V_{\mu}}$ in that range
- ▶ B-meson is at rest, inject momentum on pion side
- ▶ Using partially quenched daughter quark-masses should help to better resolve quark-mass dependence and pion-energy dependence

Conclusion

- ▶ We have completed tuning the parameters of the RHQ action for b-quarks, and find good agreement between our predictions for bottomonium masses and fine splittings with experiment.
- Given this success, we are now using this method for B-meson quantities such as decay constants and form factors, and expect to obtain errors competitive with other groups.
- ► The RHQ action can also be used for charm quarks, and Hao Peng is currently performing the necessary parameter tuning.
- ▶ We should have results for decay constants, mixing parameters, and form factors within the next year, and maybe sooner!